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Abstract

This paper develops the theory for a fault-tolerant, permanent magnet biased, homopolar magnetic
bearing. If some of the coils or power amplifiers suddenly fail, the remaining coil currents change via a
novel distribution matrix such that the same magnetic forces are maintained before and after failure.
Lagrange multiplier optimization with equality constraints is utilized to calculate the optimal distribution
matrix that maximizes the load capacity of the failed bearing. Some numerical examples of distribution
matrices are provided to illustrate the new theory. Simulations show that very much the same dynamic
responses (orbits or displacements) are maintained throughout failure events (up to any combination of 5
coils failed for the 8 pole magnetic bearing) while currents and fluxes change significantly. The overall load
capacity of the bearing actuator is reduced as coils fail. The same magnetic forces are then preserved up to
the load capacity of the failed bearing.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A magnetic bearing system is a mechatronics device consisting of a magnetic force actuator (an
active magnetic bearing, or AMB), motion sensors, power amplifiers, and a feedback controller
(DSP), that suspends the spinning rotor magnetically without physical contact, and suppresses
vibrations. Magnetic bearings find greater use in high speed, high performance applications since
they have many advantages over conventional fluid film or rolling element bearings, such as lower
friction losses, lubrication free, temperature extremes, no wear, quiet, high speed operations,
actively adjustable stiffness and damping, and dynamic force isolation. Though magnetic bearings
find more applications in industry, reliability requirements limit magnetic bearings from being
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used in highly critical applications. Failure of components such as coils or power amplifiers in
magnetic bearings may result in a failure of the entire system.

Fault tolerant control provides continued operation of magnetic bearing actuators even if its
power amplifiers or coils suddenly fail. Much research has been devoted to fault-tolerant
heteropolar magnetic bearings. Maslen and Meeker [1] introduced a fault-tolerant 8-pole
heteropolar magnetic bearing actuator with independently controlled currents and experimentally
verified it in Maslen et al. [2]. Flux coupling in a heteropolar magnetic bearing allows the remaining
coils to produce force resultants identical to the unfailed bearing, if the remaining coil currents are
properly redistributed. Na and Palazzolo [3,4] also investigated the optimized realization of fault-
tolerant magnetic bearing actuators and experimentally showed it on a flexible rotor such that rotor
displacements after failure can be maintained close to the displacements before failure for up to all
combinations of 4 coils failed and certain combinations of 5 coils failed out of 8 coils. Na and
Palazzolo [5] introduced a fault-tolerant control scheme utilizing the grouping of currents to reduce
the required number of controller outputs and to remove decoupling chokes.

To the best of the authors’ knowledge no fault-tolerant control algorithm has been developed
for the permanent magnet biased homopolar magnetic bearings. Homopolar magnetic bearings
have a unique biasing scheme that directs the bias flux flow into the active pole plane where it
energizes the working air gaps, and then returns through the other pole plane (either active or
dead) and the shaft sleeve. Homopolar magnetic bearings yield a very high efficiency when the
permanent magnets are used as the source of bias flux to energize the air gaps and the
electromagnetic coils are used to supply control fluxes. Unique flux paths of mixed axial/radial
orientation in homopolar design help to lower eddy current power losses significantly [6]. Some of
the results on modelling, design, and control of homopolar magnetic bearings are shown in
literature. Sortore et al. [7] and Allaire et al. [8] presented design methods and experimental
verifications for permanent magnet biased magnetic bearings. Similarly Maslen et al. [9] showed
analytical and experimental results on the design and construction of permanent magnet biased
magnetic bearings. Lee et al. [10,11] provides extensive discussion of design, testing and
performance limits of the permanent magnet biased magnetic bearings. Fan et al. [12] also
suggested systematic design procedures for permanent magnet biased magnetic bearings.

The present work describes the theory and following numerical analysis for the novel fault-
tolerant homopolar magnetic bearing. Energy efficient homopolar magnetic bearings with fault
tolerant capability may find great use in some applications such as flywheel energy storage systems
and momentum wheels.

2. Bearing model

The schematic drawing of an 8-active pole, permanent magnet biased homopolar magnetic
bearing is shown in Fig. 1. Assuming that eddy current effects and material path reluctances are
neglected, Maxwell’s equations are reduced to the equivalent magnetic circuit for the homopolar
magnetic bearing as shown in Fig. 2. The reluctance in air gap j of the active pole plane is

Rj ¼
gj

m0a0
; ð1Þ
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where
gj ¼ g0 � x cos yj � y sin yj: ð2Þ

Applying Ampere’s law and Gauss’s law to the magnetic circuit leads to a matrix equation,
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Fig. 1. Schematic of an 8-active pole, permanent magnet biased magnetic bearing.
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Fig. 2. Equivalent magnetic circuit.
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or

RF ¼ H þ NI : ð4Þ

The 8-pole homopolar magnetic bearing utilizes 8 number of coils each driven by its
independent power amplifiers. The control currents distributed to the bearing are generally
expressed as an 8� 2 matrix T and control voltage vector vc: The current vector is

I ¼ Tvc; ð5Þ

where

T ¼ ½TxTy	; vc ¼
vcx

vcy

" #
:

For example a distribution matrix for an 8-pole homopolar bearing with independent currents is

*T ¼

cos
p
8

sin
p
8

cos
3p
8

sin
3p
8

cos
5p
8

sin
5p
8

cos
7p
8

sin
7p
8

cos
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8

sin
9p
8

cos
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8

sin
11p
8

cos
13p
8

sin
13p
8

cos
15p
8

sin
15p
8

2
666666666666666666666666664

3
777777777777777777777777775

:

The feedback control voltages vcx and vcy; determined with any type of control law and
measured rotor motions, are distributed to each pole via *T in normal operation, and create
effective stiffness and damping of the bearing to suspend the rotor around the bearing center
position. With the uniform current distribution with *T as well as the symmetric bearing
geometries, magnetic forces are (x; y) decoupled and vary linearly with respect to control currents
and rotor displacements around the bearing center position. If symmetry is lost due to a coil
failure, magnetic forces are no longer decoupled and linear with respect to control currents and
rotor displacements, and even it may be difficult to maintain stable control. Reassigning the
remaining currents with a redefined current distribution scheme may remedy this by providing the
same decoupled magnetic forces as those before failure.

If some coils fail, the full (8� 1) current vector is related to the reduced current vector by
introducing a failure map matrix W :

I ¼ W #I: ð6Þ
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For example the matrix W for the 5–7–8th coils failed bearing is described as

W ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

2
666666666666664

3
777777777777775

:

The reduced distribution matrix #T is defined as

#I ¼ #Tvc; ð7Þ

where

#T ¼ ½ #Tx
#Ty	; ð8Þ

#Tx ¼ ½t1; t2;y; tq	T; #Ty ¼ ½tqþ1; tqþ2;y; t2q	T:

The parameter q represents the number of unfailed poles.
The flux densities in the active pole working air gaps are reduced with flux leakage, fringing,

and saturation of magnetic material. The flux density vector in the air gaps with failed coils is
described as

B ¼ BA�1R�1ðH þ NW #TvcÞ; ð9Þ

where the pole face area matrix is A ¼ diagð½a0; a0; a0; a0; a0; a0; a0; a0	Þ: The flux density vector is
then

B ¼ Gv; ð10Þ

where

G ¼ ½GbH Gc
#Tx Gc

#Ty 	; v ¼

1

vx

vy

2
64

3
75; ð11Þ

Gb ¼ BA�1R�1; Gc ¼ BA�1R�1NW :

Magnetic forces developed in the active pole plane are described as

fx ¼ vTMxv; ð12Þ

fy ¼ vTMyv; ð13Þ

where

Mxð #TÞ ¼ �GT @D

@x
G; Myð #TÞ ¼ �GT @D

@y
G; ð14Þ
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and where the air gap energy matrix is;

D ¼ diagð½gja0=ð2m0Þ	Þ: ð15Þ

3. Bias linearization

The magnetic forces in Eqs. (12) and (13) can be linearized about the bearing center
position and the zero control voltages by using Taylor series expansion. The linearized magnetic
forces are;

Fx

Fy

" #
¼ �

kpxx kpxy

kpyx kpyy

" #
x

y

" #
þ

kvxx kvxy

kvyx kvyy

" #
vcx

vcy

" #
: ð16Þ

The position stiffnesses are defined as

kpjo ¼ �HT @Qjb

@o

				
j¼0o¼0

H; ð17Þ

where

Qjb ¼ �Gb

@D

@j
Gb:

The parameters j and o represent either x or y: The position stiffnesses of the homopolar
bearing remain unchanged with a coil failure since the position stiffnesses are only influenced by
the bias flux driven with permanent magnets. The voltage stiffnesses are defined as

kvjo ¼ 2HTQbj
		
j¼0o¼0

#To; ð18Þ

where

Qbj ¼ �Gb
@D

@j
Gc:

For example the direct voltage stiffness of an unfailed bearing with the distribution matrix
of *T is

kv ¼ kvjj ¼ 2HTQbj
		
j¼0o¼0

*Tj: ð19Þ

Employing an optimal current distribution matrix T may decouple the linearized forces of the
failed bearing, and even maintain the same decoupled magnetic forces as those of an unfailed
magnetic bearing. Maslen and Meeker [1] introduced a linearization method which effectively
decouple the control forces for a failed bearing by choosing a proper distribution matrix. Though
not identified in [1], the direct voltage stiffness kv is used to yield the same linearized control forces
as those of the unfailed bearing. The necessary conditions to yield the same decoupled magnetic
control forces are

Mx ¼ kv

0 1=2 0

1=2 0 0

0 0 0

2
64

3
75; My ¼ kv

0 0 1=2

0 0 0

1=2 0 0

2
64

3
75: ð20Þ
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If the distribution matrix #T is determined such that Eq. (20) should be met, the magnetic forces at
bearing center position in Eqs. (12) and (13) lead to

fx ¼ kvvcx; fy ¼ kvvcy: ð21Þ

Eqs. (14) and (20) can be written in 18 scalar forms, and then boils down to 10 algebraic
equations if redundant terms are eliminated. The equality constraints to yield the same control
forces before and after failure are

h1ð #TÞ ¼ #TT
x Qx0

#Tx ¼ 0;

h2ð #TÞ ¼ #TT
y Qx0

#Ty ¼ 0;

h3ð #TÞ ¼ HTQbx0
#Ty ¼ 0;

h4ð #TÞ ¼ #TT
x Qx0

#Ty ¼ 0;

h5ð #TÞ ¼ HTQbx0
#Ty ¼ kv=2;

h6ð #TÞ ¼ #TT
x Qy0

#Tx ¼ 0;

h7ð #TÞ ¼ #TT
y Qy0

#Ty ¼ 0;

h8ð #TÞ ¼ HTQby0
#Tx ¼ 0;

h9ð #TÞ ¼ #TT
x Qy0

#Ty ¼ 0;

h10ð #TÞ ¼ HTQby0
#Ty ¼ kv=2; ð22Þ

where

Qjb0 ¼ �Gb

@D

@j
Gb

				
j¼0o¼0

; Qbj0 ¼ �Gb

@D

@j
Gc

				
j¼0o¼0

; Qj0 ¼ �Gc

@D

@j
Gc

				
j¼0o¼0

:

4. Optimal distribution matrix solutions

There may exist multiple candidates of #T’s that satisfy the necessary conditions described in
Eq. (22). The criterion for choosing the best candidate is the one that will yield the maximum load
capacity prior to any saturation. To accomplish this a distribution matrix #T can be determined by
using the Lagrange Multiplier method to minimize the Euclidean norm of the flux density vector
B [3]. The cost function is defined as

J ¼ Bð #TÞTPBð #TÞ; ð23Þ

where the diagonal weighting matrix P is also selected to maximize the load capacity.
The Lagrange Multiplier method is then used to solve for #T that satisfies Eq. (22). Define:

Lð #TÞ ¼ Bð #TÞTPBð #TÞ þ
X10
j¼1

ljhjð #TÞ: ð24Þ
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Partial differentiation of Eq. (24) with respect to ti and lj leads to 2q þ 10 non-linear algebraic
equations to solve for ti and lj:

C ¼

c1ðt; lÞ

c2ðt; lÞ

�

�

�

c2qþ9ðt; lÞ

c2qþ10ðt; lÞ

2
666666666664

3
777777777775
¼ 0; ð25Þ

where

ci ¼
@L

@ti

¼ 0; i ¼ 1; 2;y; 2q; ð26Þ

c2qþj ¼ hjð #TÞ ¼ 0; j ¼ 1; 2;y; 10: ð27Þ

Eq. (25) can be solved for ti and lj numerically by any non-linear algebraic equation solver.
Since the cost function is not convex and equality constraints are not affine, there may
exist multiple local optima. Various initial guesses of ti and lj can be tested to find a better
solution of #T:

Some examples of distribution matrices are calculated for the 8-pole homopolar magnetic
bearing with the nominal air gap g0 (0.508mm), pole face area a0 (602mm2), number of coil turns
n(50 turns). It is assumed that permanent magnets are selected to produce bias flux density of 0.6T
in the air gaps of the active pole plane. The design of the permanent magnets for a homopolar
magnetic bearing is beyond the scope of this paper. The direct voltage stiffness kv is then
calculated as 106.651N/V. A distribution matrix for an 8-pole homopolar bearing with the 7–8th
coils failed operation is calculated as

T78 ¼

1:9337 �0:5171

�0:7557 2:1604

�0:2844 0:3313

�0:3109 0:2836

�2:1707 0:7506

0:5313 �1:9159

0 0

0 0

2
666666666666664

3
777777777777775

: ð28Þ

Eq. (14) is satisfied with the calculated T78 as shown in

Mx ¼

0 53:3254 �0:0005

53:3254 �0:0084 �0:0097

�0:0005 �0:0097 �0:0196

2
64

3
75; My ¼

0 0 53:3247

0 0:0148 0:0106

53:3247 0:0106 0:0092

2
64

3
75:
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A distribution matrix with the 6–7–8th coils failed operation is calculated as

T678 ¼

1:5852 0:5941

�0:9194 1:4034

�0:5185 1:2468

�0:3469 1:6607

�2:2336 �0:0018

0 0

0 0

0 0

2
666666666666664

3
777777777777775

; ð29Þ

Mx ¼

0 53:3195 0:0019

53:3195 �0:2224 0:2098

0:0019 0:2098 �0:0971

2
64

3
75; My ¼

0 0:0023 53:3134

0:0023 0:3003 �0:0071

53:3134 �0:0071 0:5396

2
64

3
75:

A distribution matrix with the 5–6–7–8th coils failed operation is calculated as

T5678 ¼

1:8351 0:8207

0:2480 1:6421

�0:2480 1:6422

�1:8351 0:8206

0 0

0 0

0 0

0 0

2
666666666666664

3
777777777777775

; ð30Þ

Mx ¼

0 51:6665 �0:0005

51:6665 0:0002 2:4646

0 2:4646 �0:0005

2
64

3
75; My ¼

0 0 52:8487

0 6:3107 0

52:8487 0 3:0923

2
64

3
75:

A distribution matrix with the 4–5–6–7th–8th coils failed operation is calculated as

T45678 ¼

2:3563 0:2173

0:7656 1:8217

�1:5431 1:8800

0 0

0 0

0 0

0 0

0 0

2
666666666666664

3
777777777777775

; ð31Þ

ARTICLE IN PRESS

U.J. Na / Journal of Sound and Vibration 272 (2004) 495–511 503



Mx ¼

0 44:1613 2:5757

44:1613 7:7930 1:6296

2:5757 1:6296 �0:4714

2
64

3
75; My ¼

0 2:6463 50:5479

2:6463 11:2544 �4:5018

50:5479 �4:5018 7:4300

2
64

3
75:

Similarly, the distribution matrices can be calculated for a failed homopolar bearing up to all
combinations of 5 coils failed out of 8 coils. In the previous fault tolerant scheme with
heteropolar magnetic bearings [3,4], distribution matrix solutions do not exist for a certain
combination of 5 failed coils (for example, no solution exists for 5 adjacent coils failed
heteropolar bearings). No solutions exist if more than 5 coils fail for the homopolar magnetic
bearing since at least 3 independent currents are required to generate arbitrary forces in a
magnetic bearing [13].

The calculated voltage stiffnesses of the bearing with the distribution matrices of Eqs. (28)–(31)
are shown in Table 1. Table 1 shows that the linearized magnetic forces of the homopolar
magnetic bearing actuator remain very much unchanged even though any of the distribution
matrices of *T; T78; T678; T5678; and T45678 are used in case of failure. However, the overall load
capacity of the bearing is reduced as coils fail. The same magnetic forces are then preserved up to
the load capacity of the failed bearing. The load capacities of the multiple poles failed homopolar
magnetic bearing are calculated for the distribution matrices of T78; T678; T5678; and T45678 and
shown in Fig. 3. The outer locus shows the maximum load capacity of the unfailed bearing,
whereas the inner locus shows the failed bearing load capacities for eight directions. It is notable
that the load capacities before magnetic saturation for the failed homopolar magnetic bearing are
greatly improved compared to those of heteropolar magnetic bearings shown in Ref. [3]. The
maximum load capacity of the unfailed homopolar magnetic bearing is calculated to be 680N.
The load capacity of 5 straight coils failed bearing is reduced to 230N (34% of the full load
capacity).

5. Control system design and simulations

The schematic of a fault-tolerant control scheme utilizing distribution matrices developed
in the previous section is shown in Fig. 4. The controller consists of two independent parts, which
are a feedback voltage control law and an adaptive current distribution mechanism. Though any
control algorithm for magnetic bearing systems appearing in the literature can be utilized with the
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Table 1

The calculated voltage stiffnesses for the failed bearing

Voltage stiffness (N/V) *T T78 T678 T5678 T45678

kvxx 106.651 106.650 106.639 103.333 88.3227

kvxy 0 �0.001 0.0037 0 5.1514

kvyx 0 0 0.0047 0 5.2926

kvyy 106.651 106.649 106.627 105.697 101.096
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fault tolerant scheme, for sake of illustration, a simple PD feedback control law is used to stabilize
the system.

vcj ¼ Kpjþ Kd ’j; ð32Þ

jAðx; yÞ:

ARTICLE IN PRESS

Fig. 3. Load capacities of the failed homopolar magnetic bearings.
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Fig. 4. Schematic of the fault-tolerant controller.
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While the feedback control law remains unaltered during the failure the appropriate current
distribution matrix T can be continuously updated using an adaptive current distribution
mechanism. The fault-tolerant control scheme can be easily implemented in a physical controller
(DSP). By prior experience [4] this series of actions for failure detection, searching for T ; and
replacement by the new T can be implemented in one loop time of a fast (>15K/s) DSP
controller.

The fault-tolerant control system is simulated on a horizontal flexible rotor supported on the
homopolar bearings. A finite element model of the flexible rotor with 38 elements is shown in
Fig. 5. The flexible rotor has mass of 10.7 kg, length of 0.7m. Two radial magnetic bearings are
located at 0.1235m from the ends. The flexible rotor is discretized into a reasonable number of
elements which consist of a series of massless beam elements and lumped mass and inertias. The
mass, polar moment of inertia, and transverse moment of inertia are halved and placed at each
node. The equation of motion for the flexible rotor is then described as

M .X þ G ’X þ KX ¼ F ; ð33Þ

where M; G; and K represent mass, gyroscopic moment, and stiffness matrices, respectively.
External forces exerted on the system of equations are described as

F ¼ Fm þ Fg þ Fu; ð34Þ

Fm; Fg; and Fu represent magnetic force, gravity force, and unbalanced force vectors, respectively.
The magnetic force vector is

Fm ¼ *H *F; ð35Þ

where

*F ¼ f A
x f A

y f B
x f B

y

h iT

;

and where *H assigns magnetic forces to the corresponding states.
The following system dynamics simulation illustrates the transient response of a rotor

supported by magnetic bearings during a coil failure event. An unbalance force of meO2 with
m(2.0 g), e(0.01m) and O(spinning speed) are applied at the two bearing locations. The
distribution matrix of *T is switched to T5678 and T45678 when 4 adjacent coils failed at 0.02 s and
then 5 adjacent coils failed at 0.04 s. The rotor speed is held constant at 20,000 r.p.m. Fig. 6 shows
transient response of the current inputs to the outboard bearing from the normal unfailed
operation through the 5–6–7–8th coils and 4–5–6–7–8th coils of the outboard bearing failed at
0.02 s and 0.04 s, respectively. Fig. 7 shows the corresponding transient response of the flux
densities in the outboard bearing for the 5–6–7–8th coils and 4–5–6–7–8th coils failed operation.

ARTICLE IN PRESS

Outboard Magnetic 

Bearing A 

Inboard Magnetic 

Bearing B 

Fig. 5. Finite element model of the flexible rotor.

U.J. Na / Journal of Sound and Vibration 272 (2004) 495–511506



Figs. 8 and 9 show transient rotor displacements and transient orbits at the outboard bearing for
the 5–6–7–8th coils and 4–5–6–7–8th coils failed operation respectively. Figs. 6–9 indicates that
very much the same rotordynamic responses are maintained throughout the series of failure
events, while currents and fluxes in the homopolar magnetic bearing change significantly.

6. Conclusions

A fault tolerant control scheme is developed for an energy efficient homopolar magnetic
bearing. The homopolar bearing actuator using the fault tolerant control algorithm can preserve
the same linearized magnetic forces by redistributing the remaining currents even if some
components such as coils or power amplifiers suddenly fail. The distribution matrix T of control
voltages is determined by using the Lagrange Multiplier optimization with equality constraints for
a failed bearing in a manner that the load capacity should be maximized. Simulations show that
very much the same vibrations (orbits or displacements) are maintained throughout failure events
while currents and fluxes change significantly with different distribution scheme.

Only control currents as well as control fluxes are redistributed for the failed bearing while bias
flux driven by permanent magnets remains constant. Less strict constraints of only 10 equations
are required for the fault tolerant homopolar bearing to produce the same magnetic forces, while
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Fig. 6. Current plot for a series of failures.
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12 constraint equations are required for the fault tolerant heteropolar bearing in Ref. [3]. This
released conditions may give some benefits to the realization of fault tolerant homopolar bearings.
The solution space of distribution matrices is extended for the homopolar bearing. The
distribution matrices can be calculated for a failed homopolar bearing up to all combinations of 5
coils failed out of 8 coils. In the previous fault tolerant scheme with heteropolar magnetic
bearings, no solutions exist for certain combinations of 5 failed coils. The load capacities of the
failed homopolar magnetic bearings are greatly increased compared to those of heteropolar
magnetic bearings.

Fault tolerance of the magnetic bearing actuator is achieved at the expense of additional
hardware requirements and reduction of overall bearing load capacity. Therefore, the fault
tolerant magnetic bearing should be designed enough to support loads even in case of a severe
failure (5 coils failed out of 8 coils). Otherwise, disturbances from unbalance, runouts, and
sideloads should be maintained at low level to prevent saturation.

Appendix A. Nomenclature

a0 pole face area of an active pole
A diagonal matrix of pole face area a0

g0 nominal air gap in active pole plane
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Fig. 7. Flux density plot for a series of failures.
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hc coercive force of a permanent magnet
ij currents through the jth pole
I current vector
Kp;Kd proportional and derivative gains
lpm length of a permanent magnet
n number of coil turns
q Number of unfailed poles
Rj air gap reluctance of the jth pole
RR return path reluctance
x; y journal displacements
m0 permeability of air
B flux fringing factor
fj flux through the jth pole
vcx; vcy x and y control voltages
O rotating speed
yj pole angle of the jth pole
T current distribution matrix
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Fig. 8. Displacement plot for a series of failures.
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